Result type
journal article in Web of Science database
Description
We establish the equivalence between weak and viscosity solutions to the nonhomogeneous double phase equation with lower-order term - div(|Du|(p-2)Du+a(x)|Du|(q-2)Du)= f (x, u, Du), 1 < p <= q < infinity, a(x) >= 0. We find some appropriate hypotheses on the coefficient a(x), the exponents p, q and the nonlinear term f to show that the viscosity solutions with a priori Lipschitz continuity are weak solutions of such equation by virtue of the inf(sup)-convolution techniques. The reverse implication can be concluded through comparison principles. Moreover, we verify that the bounded viscosity solutions are exactly Lipschitz continuous, which is also of independent interest.