Introduction to Fuzzy Optimization Mathematical Foundations of Fuzzy Logic

Illia Baturov, Alisher Mazhirinov

November 21, 2024

What is Fuzzy Optimization?

Definition:

Fuzzy optimization extends traditional optimization methods to handle uncertainty and imprecision by incorporating fuzzy logic. It allows decision-making in systems where:

- Constraints and objectives are not precisely defined.
- Parameters are expressed using fuzzy numbers or linguistic terms.
- Solutions are evaluated based on degrees of satisfaction rather than strict feasibility.

Key Feature:

Fuzzy optimization provides a framework to find solutions that best satisfy all fuzzy constraints and objectives simultaneously.

Applications of Fuzzy Optimization

Where can Fuzzy Optimization be used?

- Decision-Making Problems: Handling multi-criteria decision-making under uncertainty.
- Supply Chain Management: Optimizing resource allocation and logistics with imprecise demand or supply forecasts.
- Control Systems: Designing robust controllers in dynamic environments with uncertain parameters.
- Finance and Economics: Portfolio optimization, risk analysis, and economic modeling with vague or uncertain data.
- Engineering Design: Solving optimization problems with flexible constraints and objectives.

Key Insight:

Fuzzy optimization is widely applicable in systems requiring flexibility and adaptability to uncertainty.

1. Possibilistic linear equality systems

Linear equality system

 Modelling real world problems mathematically we often have to find a solution to a linear equality system.

$$a_{i1}x_1 + \cdots + a_{in}x_n = b_i, \quad i = 1, \dots, m$$

or shortly,

$$Ax = b$$

where a_{ij} , b_i , and x_i are **real numbers**.

- Linear equality system generally belongs to the class of ill-posed problems.
- Small perturbation of the parameters a_{ij} and b_i may cause a large deviation in the solution.

Possibilistic linear equality system

A possibilistic linear equality system is

$$\tilde{a}_{i1}x_1 + \cdots + \tilde{a}_{in}x_n = \tilde{b}_i, \quad i = 1, \dots, m$$

or shortly,

$$\tilde{A}x = \tilde{b}$$

where $\tilde{a}_{ij}, \tilde{b}_i \in F(\mathbb{R})$ are fuzzy quantities, $x \in \mathbb{R}^n$

- The operations addition and multiplication by a real number of fuzzy quantities are defined by Zadeh's extension principle.
- The equation is understood in possibilistic sense.

Degree of satisfaction

ullet Recall the **truth value** of the assertion " $ilde{a}$ is equal to $ilde{b}$ "

$$\mathsf{Pos}(\tilde{a} = \tilde{b}) = \sup_{t} \{ \tilde{a}(t) \wedge \tilde{b}(t) \} = (\tilde{a} - \tilde{b})(0)$$

• We denote by $\mu_i(x)$ the **degree of satisfaction** of the *i*-th equation in the possibilistic linear equality system at the point $x \in \mathbb{R}^n$

$$\mu_i(x) = \operatorname{Pos}(\tilde{a}_{i1}x_1 + \cdots + \tilde{a}_{in}x_n = \tilde{b}_i)$$

• The fuzzy solution of the possibilistic linear equality system can be viewed as the intersection of the μ_i 's such that

$$\mu(x) = \min\{\mu_1(x), \dots, \mu_m(x)\}\$$

Maximizing solution

 A measure of consistency for the possibilistic linear equality system is defined as

$$\mu^* = \sup\{\mu(x) \mid x \in \mathbb{R}^n\}$$

• Let X^* be the set of points $x \in \mathbb{R}^n$ for which $\mu(x)$ attains its maximum

$$X^* = \{x^* \in \mathbb{R}^n \mid \mu(x^*) = \mu^*\}$$

• If $X^* \neq \emptyset$ and $x^* \in X^*$, then x^* is called a maximizing (or best) solution of the possibilistic linear equality system.

Hausdorff distance

ullet If $ilde{a}$ and $ilde{b}$ are fuzzy numbers with

$$[a]^{\alpha} = [a_1(\alpha), a_2(\alpha)]$$
 and $[b]^{\alpha} = [b_1(\alpha), b_2(\alpha)]$

also known as lpha-level or lpha-cut of a fuzzy number.

• Then their Hausdorff distance is defined as

$$D(\tilde{a}, \tilde{b}) = \sup_{\alpha \in [0,1]} \max\{|a_1(\alpha) - b_1(\alpha)|, |a_2(\alpha) - b_2(\alpha)|\}$$

• $D(\tilde{a},\tilde{b})$ is the maximal distance between the lpha-level sets of \tilde{a} and \tilde{b}

Lipschitz condition

- Let L > 0 be a real number.
- By F(L) we denote the set of all fuzzy numbers $\tilde{a} \in F$ with membership function satisfying the **Lipschitz condition**

$$|\tilde{a}(t) - \tilde{a}(t')| \leq L|t - t'|, \quad \forall t, t' \in \mathbb{R}$$

- The Lipschitz condition is a criterion that ensures a function does not change too rapidly.
- In fuzzy mathematics, membership functions satisfying the Lipschitz condition ensure that the fuzziness changes smoothly with respect to its parameters.

Perturbed fuzzy equality system, part I

- In many important cases, the fuzzy parameters \tilde{a}_{ij} , \tilde{b}_i of the possibilistic linear equality system are **not known exactly**.
- ullet We have to work with their **approximations** $ilde{a}_{ij}^\delta, ilde{b}_i^\delta$ such that

$$\max_{i,j} D(\tilde{a}_{ij}, \tilde{a}_{ij}^{\delta}) \leq \delta \quad \max_{i} D(\tilde{b}_{i}, \tilde{b}_{i}^{\delta}) \leq \delta$$

where $\delta \geq 0$ is a real number.

Then we get the following system with perturbed fuzzy parameters

$$\tilde{a}_{i1}^{\delta}x_1+\cdots+\tilde{a}_{in}^{\delta}x_n=\tilde{b}_i^{\delta},\quad i=1,\ldots,m$$

or shortly,

$$\tilde{A}^{\delta}x = \tilde{b}^{\delta}$$

Perturbed fuzzy equality system, part II

• In a similar manner, we define the **degree of satisfaction** of the *i*-th equation of the perturbed fuzzy equality system at $x \in \mathbb{R}^n$

$$\mu_i^\delta(x) = \mathsf{Pos}(\tilde{a}_{i1}^\delta x_1 + \dots + \tilde{a}_{in}^\delta x_n = \tilde{b}_i^\delta)$$

 In a similar manner, we define the fuzzy solution of the perturbed fuzzy equality system

$$\mu^{\delta}(x) = \min\{\mu_1^{\delta}(x), \dots, \mu_m^{\delta}(x)\}\$$

 In a similar manner, we define the measure of consistency of the perturbed fuzzy equality system

$$\mu^*(\delta) = \sup\{\mu^{\delta}(x) \mid x \in \mathbb{R}^n\}$$

• Let $X^*(\delta)$ denote the set of maximizing solutions of the perturbed fuzzy equality system.

1st theorem on stability of fuzzy solutions

- ullet Let L>0 and $ilde{a}_{ij}, ilde{a}_{ij}^\delta, ilde{b}_i, ilde{b}_i^\delta\in F(L)$
- If the Hausdorff distance between fuzzy numbers and perturbed fuzzy numbers is bounded by δ :

$$\max_{i,j} D(\tilde{a}_{ij}, \tilde{a}_{ij}^{\delta}) \leq \delta, \quad \max_{i} D(\tilde{b}_{i}, \tilde{b}_{i}^{\delta}) \leq \delta$$

• Then the fuzzy solutions $\mu(x)$ and $\mu^{\delta}(x)$ of fuzzy system and perturbed fuzzy system, respectively, satisfy:

$$\|\mu - \mu^{\delta}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^n} |\mu(\mathbf{x}) - \mu^{\delta}(\mathbf{x})| \le L\delta$$

- **Key Idea**: The difference between the solutions is bounded by $L\delta$, ensuring stability under small perturbations of the fuzzy parameters.
- Extension: This theorem applies to possibilistic linear equality systems with continuous fuzzy numbers.

Fuzzy solution (symmetric triangular fuzzy numbers)

 Consider now the possibilistic equality system with symmetric triangular fuzzy numbers

$$(a_{i1},\alpha)x_1+\cdots+(a_{in},\alpha)x_n=(b_i,\alpha), \quad i=1,\ldots,m$$

or shortly,

$$(A, \alpha)x = (b, \alpha)$$

Then the fuzzy solution can be written as

$$\mu(x) = \begin{cases} 1 & \text{if } Ax = b \\ 1 - \frac{||Ax - b||_{\infty}}{\alpha(|x|_1 + 1)} & \text{if } 0 < ||Ax - b||_{\infty} \le \alpha(|x|_1 + 1) \\ 0 & \text{if } ||Ax - b||_{\infty} > \alpha(|x|_1 + 1) \end{cases}$$

Where

$$||Ax - b||_{\infty} = \max\{|(a_1, x) - b_1|, \dots, |(a_m, x) - b_m|\}$$

2nd theorem on stability of fuzzy solutions

If

$$D(\tilde{A}, \tilde{A}^{\delta}) = \max_{i,j} |a_{ij} - a_{ij}^{\delta}| \leq \delta, \quad D(\tilde{b}, \tilde{b}^{\delta}) = \max_{i} |b_{i} - b_{i}^{\delta}| \leq \delta$$

Then

$$\|\mu - \mu^{\delta}\|_{\infty} = \sup_{x} |\mu(x) - \mu^{\delta}(x)| \le \frac{\delta}{\alpha}$$

• Where $\mu(x)$ and $\mu^{\delta}(x)$ are the fuzzy solutions of the systems

$$(A, \alpha)x = (b, \alpha)$$
 and $(A^{\delta}, \alpha)x = (b^{\delta}, \alpha)$

respectively.

• **Key Idea**: The difference between the solutions is bounded by $\frac{\delta}{\alpha}$, ensuring stability under small perturbations of the fuzzy parameters.

3rd theorem on stability of fuzzy solutions

- Let $\tilde{a}_{ij}, \tilde{a}_{ij}^{\delta}, \tilde{b}_i, \tilde{b}_i^{\delta} \in F$ be fuzzy numbers.
- If the Hausdorff distance between fuzzy numbers and perturbed fuzzy numbers is bounded by δ :

$$\max_{i,j} D(\tilde{a}_{ij}, \tilde{a}_{ij}^{\delta}) \leq \delta, \quad \max_{i} D(\tilde{b}_{i}, \tilde{b}_{i}^{\delta}) \leq \delta$$

Then

$$\|\mu - \mu^{\delta}\|_{\infty} \le \omega(\delta),$$

- Key Idea: The difference between the solutions is bounded by $\omega(\delta)$, ensuring stability under small perturbations of the fuzzy parameters.
- The modulus of continuity $\omega(\delta)$ is a function that measures how sensitive the fuzzy coefficients are to small changes or perturbations.
- It represents the maximum amount by which the fuzzy solutions $\mu(x)$ and $\mu^{\delta}(x)$ can differ due to a perturbation δ in the fuzzy parameters.

Example of fuzzy solution, part I

Consider the following two-dimensional possibilistic equality system

$$(1, \alpha)x_1 + (1, \alpha)x_2 = (0, \alpha)$$

 $(1, \alpha)x_1 - (1, \alpha)x_2 = (0, \alpha)$

Then its fuzzy solution is

$$\mu(x) = \begin{cases} 1 & \text{if } x = 0 \\ \tau_2(x) & \text{if } 0 < \max\{|x_1 - x_2|, |x_1 + x_2|\} \le \alpha(|x_1| + |x_2| + 1) \\ 0 & \text{if } \max\{|x_1 - x_2|, |x_1 + x_2|\} > \alpha(|x_1| + |x_2| + 1) \end{cases}$$

Where

$$au_2(x) = 1 - rac{\max\{|x_1 - x_2|, |x_1 + x_2|\}}{lpha(|x_1| + |x_2| + 1)}$$

Example of fuzzy solution, part II

Fig. 4.1. The graph of fuzzy solution of system with $\alpha = 0.4$

Example of fuzzy solution, part III

• The only maximizing solution of system is

$$x^* = (0,0)$$

 There is no problem with the stability of the solution even for the crisp system

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• Because $det(A) \neq 0$

2. Sensitivity analysis of $ilde{a}x= ilde{b}$ and $ilde{a}^\delta x= ilde{b}^\delta$

Crisp vs Fuzzy

- Crisp Systems: Use sharp, binary logic (0 or 1).
- Fuzzy Systems: Allow for degrees of membership between 0 and 1.
- Key Question: How do these approaches relate, and what are their differences?

Crisp vs Fuzzy Systems: A Comparison

Crisp Systems:

- Sharp boundaries.
- Boolean logic (true/false).
- Example: Is age ≥ 18 ?

Fuzzy Systems:

- Smooth transitions.
- Degrees of membership $(0 \le \mu \le 1)$.
- Example: "Almost an adult" $(\mu = 0.7)$.

Example: Automation Control

Crisp:

- Rule: If temperature $\geq 30^{\circ} C$, turn on the fan.
- $t = 29^{\circ}C$: Fan off.

Fuzzy:

- Rule: If temperature is close to $30^{\circ}C$, the fan runs partially.
- $t = 29^{\circ}C$: Fan runs at 80
- $t = 31^{\circ}C$: Fan runs at 100

Relationship Between Crisp and Fuzzy

- Crisp systems are a special case of fuzzy systems with strict membership functions ($\mu = 0$ or $\mu = 1$).
- Fuzzy systems generalize crisp systems by introducing smooth transitions.

Advantages of Fuzzy Systems

- Flexibility: Models real-world uncertainty.
- Smoothness: Eliminates rigid boundaries.
- Real-world applications:
 - Artificial Intelligence.
 - Control Systems.
 - Decision-making in uncertain environments.

Representations of Triangular Fuzzy Numbers

Fuzzy numbers can be represented in two ways:

1. Representation as a triple: (a_1, a_2, a_3)

- a_1 : left boundary $(\mu(x) = 0)$;
- a_2 : central value $(\mu(x) = 1)$;
- a_3 : right boundary $(\mu(x) = 0)$.

Example:

$$\tilde{a} = (1, 2, 3)$$

2. Representation as a pair: (a, α)

- a: central value $(\mu(x) = 1)$;
- α : distance from the center to the boundaries ($\alpha = a_2 a_1$).

Example:

$$\tilde{a} = (2,1)$$

Equivalent representation:

$$\tilde{a} = (1, 2, 3)$$

Problem Statement

We analyze the sensitivity of the fuzzy system:

$$\tilde{a}x = \tilde{b},$$

where:

- $\tilde{a} = (a, \alpha)$ and $\tilde{b} = (b, \alpha)$,
- These are fuzzy numbers of symmetric triangular form with width $\alpha > 0$,
- The system represents a possibilistic equality.

Goal: To find the fuzzy solution $\mu(x)$.

Maximizing Solution

For $a \neq 0$, the unique maximizing solution is:

$$x^* = \frac{b}{a},$$

which corresponds to the crisp solution of ax = b.

Key Observation:

- This solution x^* provides the highest possibility $\mu(x) = 1$.
- For all other values of x, $\mu(x) \leq 1$.

Sensitivity Analysis

Consider a perturbed system:

$$\tilde{a}^{\delta}x=\tilde{b}^{\delta},$$

where:

$$|\tilde{a} - a| \le \delta, \quad |\tilde{b} - b| \le \delta.$$

Key Result:

 The difference between the fuzzy solutions of the original and perturbed systems is bounded:

$$\|\mu(x) - \mu^{\delta}(x)\| \le \frac{\delta}{\alpha}.$$

Interpretation: Small perturbations δ result in proportional changes to the fuzzy solution.

Example 1

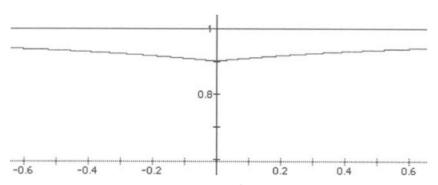


Fig. 4.4. Fuzzy solution of $(0, \alpha)x = (b^{\delta}, \alpha)$ with $\alpha = 0.2$ and $\delta = 0.02$.

Example 2

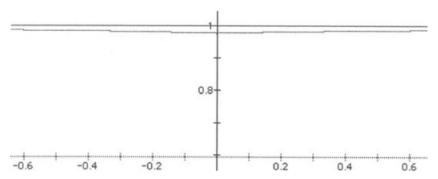


Fig. 4.5. Fuzzy solution of $(0, \alpha)x = (b^{\delta}, \alpha)$ with $\alpha = 0.2$ and $\delta = 0.005$.

Example 3

4. Fuzzy Optimization

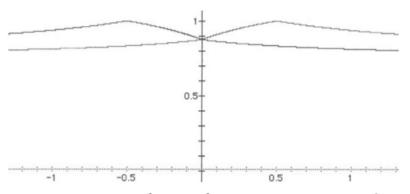


Fig. 4.7. Fuzzy solutions of $(a^{\delta}, \alpha)x = (b^{\delta}, \alpha)$ and $(a, \alpha)x = (b, \alpha)$ with $a^{\delta} = -0.01$, a = 0.01, $b^{\delta} = b = 0.005$, $\alpha = 0.04$ and $\delta = 0.02$. The maximizing solutions are $x^*(\delta) = -0.5$ and $x^* = 0.5$.

3. Possibilistic systems with trapezoid fuzzy numbers

Fuzzy equality system (trapezoid fuzzy numbers)

Consider now a possibilistic linear equality system:

$$\tilde{a}_{i1}x_1 + \cdots + \tilde{a}_{in}x_n = \tilde{b}_i, \quad i = 1, \ldots, m$$

- Where $\tilde{a}_{ij} \in F$ and $\tilde{b}_i \in F$ are symmetric trapezoid fuzzy numbers with the same width $\alpha > 0$ and tolerance intervals $[a_{ij} \theta, a_{ij} + \theta]$ and $[b_i \theta, b_i + \theta]$, respectively.
- Represented by $A = (a, b, \alpha, \beta)$ as:

$$\tilde{a}_{ij} = (a_{ij} - \theta, a_{ij} + \theta, \alpha, \alpha)$$

and

$$\tilde{b}_i = (b_i - \theta, b_i + \theta, \alpha, \alpha)$$

Symmetric trapezoid fuzzy number

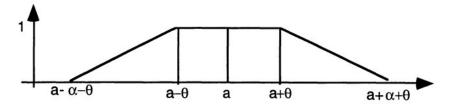


Fig. 4.8. A symmetric trapezoid fuzzy number with center a

Perturbed fuzzy equality system (trapezoid fuzzy numbers)

 The perturbed possibilistic linear equality system with symmetric trapezoid fuzzy numbers is

$$\tilde{a}_{i1}^{\delta}x_1+\cdots+\tilde{a}_{in}^{\delta}x_n=\tilde{b}_i^{\delta},\quad i=1,\ldots,m$$

Where

$$\tilde{\mathbf{a}}_{ij}^{\delta} = (\mathbf{a}_{ij}^{\delta} - \theta, \mathbf{a}_{ij}^{\delta} + \theta, \alpha, \alpha)$$

and

$$\tilde{b}_{i}^{\delta} = (b_{i}^{\delta} - \theta, b_{i}^{\delta} + \theta, \alpha, \alpha)$$

Fuzzy solutions (symmetric trapezoid fuzzy numbers)

 The fuzzy solutions to trapezoid fuzzy system and perturbed trapezoid fuzzy system can be written as

$$\mu(x) = \begin{cases} 1 & \text{if } ||Ax - b||_{\infty} \le \theta(|x|_{1} + 1) \\ 1 + \frac{\theta}{\alpha} - \frac{||Ax - b||_{\infty}}{\alpha(|x|_{1} + 1)} & \text{if } \theta(|x|_{1} + 1) < ||Ax - b||_{\infty} \le (\theta + \alpha)(|x|_{1} + 1) \\ 0 & \text{if } ||Ax - b||_{\infty} > (\theta + \alpha)(|x|_{1} + 1) \end{cases}$$
 and

$$\begin{split} \mu^{\delta}(x) &= \\ \begin{cases} 1 & \text{if } ||A^{\delta}x - b^{\delta}||_{\infty} \leq \theta(|x|_1 + 1) \\ 1 + \frac{\theta}{\alpha} - \frac{||A^{\delta}x - b^{\delta}||_{\infty}}{\alpha(|x|_1 + 1)} & \text{if } \theta(|x|_1 + 1) < ||A^{\delta}x - b^{\delta}||_{\infty} \leq (\theta + \alpha)(|x|_1 + 1) \\ 0 & \text{if } ||A^{\delta}x - b^{\delta}||_{\infty} > (\theta + \alpha)(|x|_1 + 1) \end{cases} \end{split}$$

 \bullet The stability property of fuzzy solutions does not depend on θ

4th theorem on stability of fuzzy solutions (trapezoid case)

- Let $\delta > 0$ and let μ and μ^{δ} be the solutions of possibilistic equality systems with symmetric trapezoid fuzzy numbers.
- If $a_{ij}, a_{ij}^{\delta}, b_i$ and b_i^{δ} satisfy:

$$D(\tilde{a}_{ij}, \tilde{a}_{ij}^{\delta}) = |a_{ij} - a_{ij}^{\delta}| \leq \delta, \quad D(\tilde{b}_i, \tilde{b}_i^{\delta}) = |b_i - b_i^{\delta}| \leq \delta$$

Then

$$\|\mu - \mu^{\delta}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^n} |\mu(\mathbf{x}) - \mu^{\delta}(\mathbf{x})| \le \frac{\delta}{\alpha}$$

• **Key Idea**: The difference between the solutions is bounded by $\frac{\delta}{\alpha}$, ensuring stability under small perturbations of the fuzzy parameters.

Example of fuzzy solution (trapezoid case)

The fuzzy solution of a possibilistic equation

$$(a - \theta, a + \theta, \alpha, \alpha)x = (b - \theta, b + \theta, \alpha, \alpha)$$

can be written as

$$\mu(x) = \begin{cases} 1 & \text{if } |ax - b| \le \theta(|x| + 1) \\ 1 + \frac{\theta}{\alpha} - \frac{|ax - b|}{\alpha(|x| + 1)} & \text{if } \theta(|x| + 1) < |ax - b| \le (\theta + \alpha)(|x| + 1) \\ 0 & \text{if } |ax - b| > (\theta + \alpha)(|x| + 1) \end{cases}$$

It is clear that the set of maximizing solutions

$$X^* = \{x \in \mathbb{R} : |ax - b| \le \theta(|x| + 1)\}$$

always contains the (crisp) solution set, X^{**} , of the equality ax = b

4. Flexible linear programming

Basics of Linear Programming (LP)

Classical LP model:

$$\langle a_0, x \rangle \rightarrow \min$$
 subject to $Ax \leq b$

Alternative formulation:

$$a_{01}x_1 + \cdots + a_{0n}x_n \leq b_0$$

where b_0 is a predefined aspiration level.

Flexible Linear Programming (FLP)

Replacement of crisp parameters:

- $a_{ij} \rightarrow \tilde{a}_{ij} = (a_{ij}, \alpha)$
- $b_i \rightarrow \tilde{b}_i = (b_i, d_i)$,

where $\alpha > 0$, $d_i > 0$ represent tolerance levels.

Degree of satisfaction

$$\mu_i(x) = \begin{cases} 1, & \text{if } \langle a_i, x \rangle \leq b_i, \\ 1 - \frac{(a_i, x) - b_i}{\alpha |x| + d_i}, & \text{otherwise.} \\ 0, & \text{if } \langle a_i, x \rangle > b_i + \alpha |x|_1 + d_i. \end{cases}$$

When $\alpha = 0$:

$$\mu_i(x) = \begin{cases} 1, & \text{if } \langle a_i, x \rangle \leq b_i, \\ 1 - \frac{\langle a_i, x \rangle - b_i}{d_i}, & \text{if } b_i < \langle a_i, x \rangle \leq b_i + d_i, \\ 0, & \text{if } \langle a_i, x \rangle > b_i + d_i. \end{cases}$$

Interpretation of $\mu_i(x)$

- If $\mu_i(x) = 1$, then x fully satisfies the constraint.
- If $0 < \mu_i(x) < 1$, then x partially satisfies the constraint.
- If $\mu_i(x) = 0$, the violation of the constraint is unacceptable.

Perturbed Fuzzy Linear Programming (FLP) Problem

Problem Statement

The perturbed FLP problem (4.27) is given by:

$$(a_{i1}^{\delta}\alpha)x_1+\cdots+(a_{in}^{\delta}\alpha)x_n\leq (b_i^{\delta},d_i),\quad i=0,\ldots,m,$$

where the coefficients satisfy (4.28):

$$\max_{i,j} |a_{ij} - a_{ij}^{\delta}| \leq \delta, \quad \max_{i} |b_i - b_i^{\delta}| \leq \delta.$$

Theorem: Flexible Linear Programming (FLP)

Statement:

Let $\mu(x)$ and $\mu^{\delta}(x)$ be solutions of FLP problems (4.24) and (4.27), respectively. Then:

$$\|\mu - \mu^{\delta}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{R}^n} |\mu(\mathbf{x}) - \mu^{\delta}(\mathbf{x})| \le \delta \left[\frac{1}{\alpha} + \frac{1}{d}\right]$$

where:

$$d=\min\{d_0,d_1,\ldots,d_m\}.$$

Key Implications:

- ullet Provides a bound on the difference between the solutions of FLP problems under parameter $\delta.$
- ullet Involves constants lpha and \emph{d} derived from problem parameters.

Overview of the Proof

- Goal: Prove that the absolute difference $|\mu_i(x) \mu_i^{\delta}(x)|$ is bounded for all cases.
- Approach: Analyze all possible combinations of $\mu_i(x)$ and $\mu_i^{\delta}(x)$.

Case 1:
$$\mu_i(x) = \mu_i^{\delta}(x)$$

• If $\mu_i(x) = \mu_i^{\delta}(x)$, then:

$$|\mu_i(x) - \mu_i^{\delta}(x)| = 0$$

• This is trivial, and Equation (4.31) is satisfied.

Case 2: $0 < \mu_i(x) < 1$ and $0 < \mu_i^{\delta}(x) < 1$

• Analyze the difference:

$$|\mu_i(x) - \mu_i^{\delta}(x)| = \left|1 - \frac{(a_i, x) - b_i}{\alpha |x|_1 + d_i} - \left(1 - \frac{(a_i^{\delta}, x) - b_i^{\delta}}{\alpha |x|_1 + d_i}\right)\right|$$

• Using the bounds on (a_i, x) and constants α, d_i , derive:

$$|\mu_i(x) - \mu_i^{\delta}(x)| \le \delta \cdot \left[\frac{1}{\alpha} + \frac{1}{d_i}\right]$$

Case 3:
$$\mu_i(x) = 1$$
, $0 < \mu_i^{\delta}(x) < 1$

- For $\mu_i(x) = 1$, we have $(a_i, x) \leq b_i$.
- Substituting, the difference becomes:

$$|\mu_i(x) - \mu_i^{\delta}(x)| = \left|1 - \left[1 - \frac{(a_i^{\delta}, x) - b_i^{\delta}}{\alpha |x|_1 + d_i}\right]\right|$$

Case 4:
$$0 < \mu_i(x) < 1$$
, $\mu_i^{\delta}(x) = 1$

- This case mirrors Case 3 with roles of $\mu_i(x)$ and $\mu_i^{\delta}(x)$ reversed.
- The derived bound remains:

$$|\mu_i(x) - \mu_i^{\delta}(x)| \le \delta \cdot \left[\frac{1}{\alpha} + \frac{1}{d_i}\right]$$

Case 5: $0 < \mu_i(x) < 1$, $\mu_i^{\delta}(x) = 0$

• For $\mu_i^{\delta}(x) = 0$, we have:

$$(a_i^{\delta},x)-b_i^{\delta}>\alpha|x|_1+d_i$$

• The absolute difference becomes:

$$|\mu_i(x) - \mu_i^{\delta}(x)| = \left|1 - \frac{(a_i, x) - b_i}{\alpha |x|_1 + d_i}\right|$$

This is shown to satisfy the bounded condition.

Case 6:
$$\mu_i(x) = 0$$
, $0 < \mu'_i(x) < 1$

- This case is symmetric to Case 5.
- The bound remains valid.

|Case 7: $\mu_i(x)=1$, $\mu_i^\delta(x)=0$

• Assume $\mu_i(x) = 1$, $\mu_i^{\delta}(x) = 0$. From (4.28), this leads to:

$$|(a_i,x)-b_i-((a_i^\delta,x)-b_i^\delta)|\leq \delta(|x|_1+1),$$

• On the other hand we have:

$$|(a_i,x)-b_i-((a_i^{\delta},x)-b_i^{\delta})|>\delta(|x|_1+1),$$

• Thus, this case is not feasible.

That's all Folks!

