Multiplicity and concentration of solutions to fractional anisotropic Schrodinger equations with exponential growth

Druh výsledku
článek v časopise v databázi Web of Science
Popis
In this paper, we consider the Schrodinger equation involving the fractional $(p, p_1, . . . , p_m)$-Laplacian as follows

$(-Delta)_p^s u +\sum_ {i=1}^m (-\Delta)_{p_i}^s u + V(\epsilon x)(|u|^{(N-2s)/2s} u + sum_{i=1}^m |u|^{p_i-2} u) = f (u) \in R^N$

where $\epsilon$ is a positive parameter, $N=ps, s \in (0,1), 2 \leq p < p_1 < \dots < p_m < +\infty, m \geq 1$. The nonlinear function f has the exponential growth and potential function V is continuous function satisfying some suitable conditions. Using the penalization method and Ljusternik-Schnirelmann theory, we study the existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the parameter. In our best knowledge, it is the first time that the above problem is studied.
Klíčová slova
MOSER-TRUDINGER INEQUALITY
SOBOLEV-SLOBODECKIJ SPACES
Positive solutions
ELLIPTIC-EQUATIONS
EXISTENCE
DIMENSION
SYSTEMS
STATES