The paper investigates the exponential stability and exponential estimate of the norms of solutions to a linear system of difference equations with single delay $x\left( {k+1} \right)=Ax\left( k \right)+\sum_{i=1}^sB_ix\left( {k-m_i} \right)$,
$k=0,1,\dots$ where $s\in \mathbb{N}$, $A$ and $B_i$ are square matrices and $m_i\in\mathbb{N}$.
New criterion for exponential stability is proved by the Lyapunov method. An estimate of the norm of solutions is given
as well and relations to the well-known results are discussed.
Exponential Stability of Linear Discrete Systems with Multiple Delays
Autoři
Druh výsledku
článek v časopise v databázi Web of Science
Popis
Datasheet